Welcome to this month's educational webinar

## **Optimizing Design & Mitigating Risks** For Mini-grids and Distributed Generation In Africa

Our presentation will begin at the top of the hour. See you soon!

8<sup>th</sup> ANNUAL **MER** International **MICROGRID** Conference

100% Virtual & Free — October 12-16, 2020

REGISTER NOW SEE SPONSORSHIP PACKAGES https://microgridconference.com/





## **Optimizing Design & Mitigating Risks** For Mini-grids and Distributed Generation in Africa



#### **Peter Lilienthal**

Founder, HOMER Energy by UL/ Global Microgrid Lead, UL



#### **Joseph Padbury**

Business Development Manager Sub-Saharan Africa, UL Renewables



#### James Trudeau

Global Business Development Manager, UL



#### **David Mintzer**

Head of Microgrid Advisory Services, UL



## Agenda

- **Growth & Need in Africa** Joseph Padbury UL Business Development Manager, Sub Saharan Africa
- Design Issues in Early Stage Development Dr. Peter Lilienthal UL Global Microgrid Lead, HOMER Energy Founder
- Equipment & Operations James Trudeau UL Global Business Development Manager
- **Finance Stage** David Mintzer Head of Microgrid Advisory Services, UL
- **Q&A** Marilyn Walker UL Microgrids Operations Manager, HOMER Energy Founder





# UL Builds Trust in Renewables





UL and the UL logo are trademarks of UL LLC © 2018. Proprietary & Confidential.

## UL: A History of Trust



U

## Renewable Energy Solutions





#### Key Office Locations - Renewables



#### 500+ RENEWABLE

**ENERGY EXPERTS** 

35+ years of EXPERIENCE IN RENEWABLE ENERCY



ULhasassessed

100+

UTILITY-SCALE SOLAR PROJECTS SINCE 2013



UL has issued

Type certificates on over 150 wind turbines



700+

ULhasperformed

WIND TURBINE POWER PERFORMANCE TESTS

IndependentEngineer/Owner's for 600+ WIND AND SOLAR PROJECTS SINCE 2012

#### ADVISED 90%

of the wind industry's top project - developers and plant owners



UL and the UL logo are trademarks of UL LLC © 2020. Proprietary & Confidential.

000

Forecast provider for **70+ GIGAWATTTS** OF INSTALLED RENEWABLE ENERGY PROJECTS



9

## Mini-Grids – A Growth Market

## The need

- Estimated 600 million people in Sub-Saharan Africa without access to electricity
- UN SDG "Ensure access to sustainable, affordable, reliable and modern energy for all" by 2030.
- Too costly for utilities to extend grid to rural communities





# Mini-Grids – A Growth Market

#### The solution

- Rapid technology development and operational efficiencies in recent years
- Mini-grids now a practical and viable solution to electrifying rural areas.
- Mini-grids fill an important space between individual solutions
  - $\circ$  solar home systems
  - $\circ~$  extensions of national grid
- Mini-grids offer cost effective, rapid deployment options for utilities and private developers for rural, isolated communities
- However, in order for mini-grids to be safe and sustainable, meeting the needs of the end user and funders, there needs to be real effort made in risk mitigation, from the initial concept design, through to equipment selection.





# De-facto Global Standard

>250,000 people have used HOMER

HOMER Energy by UL

>100,000 opted-in to our hybrid system design network

2009 – HOMER Energy created; exclusive license

Designing Hybrid Systems for over 25 years

### **Global Data**

>3 million HOMER files

1992 – 2008 at NREL

>75,000 projects modeled since 2014







## Microgrid/ DER Optimization & Design in HOMER®







# **Options for Energy Access**

### • Old

- Grid extension
- Diesel generators
- New
  - Minigrids
  - Stand alone solar (SHS)







## **Distributed Generation Landscape**

- Distributed Generation
  - Power produced where it is used
- Microgrids
  - Capable of isolated operation
- Minigrids
  - Always operates isolated











### Grid Extension vs. Minigrids vs. SHS

- Key considerations
  - Distance
  - Load size
  - Power quality & reliability
- SHS preferable for small homes
- Hybrid systems preferable for productive uses
  - ABC Model
    - Anchor, Business, Consumer



Very small water pumping system

Breakeven grid extension distance = 6.5 kms.



Village with 62 kW peak load

#### Breakeven grid extension distance = 460 meters



# Designing Hybrid Systems

- Degrees of design freedom
  - PV sizing
    - Daytime power
    - Battery charging
  - Battery sizing
    - 24-hour power
  - Tariff considerations
  - Reliability
    - Backup requirements
- · Lots of choices, often with incomplete data
- Sensitivity Analysis





## Diesel Alone Is No Longer Suitable for Prime Power

- Solar + batteries now less expensive
  - But more complex
- Diesel generators still ideal for backup power

|                | Diesel | Solar + batteries |
|----------------|--------|-------------------|
| Capital cost   | Low ↓  | High ↑            |
| Operating cost | High ↑ | Low ↓             |

- Complementary resources
- Diesel backup used infrequently provides reliability
  - Greatly reduces size of solar + batteries





## Financing is the Key

# Hybrid minigrids are clearly preferable, but they require capital up front.







## Energy Storage – What is it?

- Energy can be stored electrically, chemically, or mechanically
- Lithium-ion batteries are over 95% of the energy storage market, but many other technologies are being developed
- Energy Storage can serve loads ranging from small homes to minigrids to large utility scale projects
- The definition of what Energy Storage is has been changed by international fire codes like NFPA 855 and IFC 2021. It now includes battery systems for UPS, telecom, and any application over 20 kWh in size.

**Presented by James Trudeau** Global Business Development Manager, UL







## Energy Storage – Great Benefits

- Enables wider use of renewable energy
  - Solar
  - Wind
  - Reduces variability of renewable energy
- Improves electric grid stability
  - Voltage
  - Frequency
- Enables broader microgrid and minigrid use
  - Can be connected to the grid
  - Or completely off grid
- Provides improved reliability for end users
- Replaces fossil fuel power plants
  - Energy Storage combined with solar can often replace diesel generation, reducing energy costs from \$0.45 to \$0.15/kWh
  - The Solar + Storage solution reduces ground and air pollution, and reduces O&M costs





28 Major ESS Fires in South Korea 2017 – 2019



(Սլ)



ESS System Explosion, Arizona



Thermal Runaway - 25 Lithium-Ion Cells



### **Thermal Runaway - 25 Lithium-Ion Cells**

Let's do the math...

- A single 18650 Li-Ion cell is about 10 WH
- 25 cells is about 250 WH
- A typical ESS module has 5,000 WH
- A typical rack has 10 modules for 50,000 WH
- A typical rack has over 200 times more energy than the 25 cells in the video
- A typical 2 MW container has over 3,000 times
   more energy than the 25 cells in the video





# Energy Storage – Risk Mitigation

### 3 Layer Safety Approach



**Installation Codes** 

NEC: National Electric Code (NFPA 70)
NFPA 855: Standard for the Installation of Stationary Energy Storage Systems
IFC 2018 / 2021: International Fire Code



Battery Safety Certification Standards UL 1973: Batteries for Use in Stationary, Vehicle Auxiliary Power and Light Electric Rail (LER) ApplicationsUL 9540: Energy Storage Systems and Equipment



Testing for Performance or Safety

**UL 9540A:** Test Method for Evaluating Thermal Runaway Fire Propagation in Battery Energy Storage Systems



# Energy Storage – Risk Mitigation

### It Is All About Risk Management

The use of good <u>installation codes</u> and <u>equipment</u> <u>standards</u>, coupled with <u>system testing</u> and experienced <u>independent project oversight</u>, is the most effective method to manage the risk profile of battery energy storage projects.

- Financial Risks
- Operational & Performance Risks
- Safety Risks
- Environmental Risks





# **Project Bankability**

- DG & minigrid projects provide a variety of services to a diverse user base
- Projects are not expense-free and usually financed
- Obtaining funding is largely an exercise in Risk Management



#### (U)

# System & Functional Risks

A system can only be as smart and as strong as the weakest element

- Generating Equipment: Many technologies, each has its pros/cons
- **Power Electronics**: Connection to loads, gen. sources and grid
- Management System: Controls energy flow
- Safety Concept: Technology and regulatory requirements
- **System Integration**: Building a reliable, running system out of all the above components. Probably one of the most underestimated contributions to a system.
- Construction: Turning the ideas into reality, execution
- **Operation**: Keeping the system running, to serve the customer
- End-of-Life Concept: sustainable and economical





## Identification/Assessment/Prioritization



Probability of Occurrence





## Mitigation – Example

| Simulation Results                                                                                                  |                                                                                                                                                                                                                                           |                  |                  |                      |                          |                        |                                                |                       |                            |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|----------------------|--------------------------|------------------------|------------------------------------------------|-----------------------|----------------------------|
| System Architecture:<br>PV (50.0 kW)<br>Generic 3kW (20.0 )                                                         | Diesel (8.00 kW)<br>Generic 1kWh Li-Ion (100 strin<br>Converter (4.00 kW)                                                                                                                                                                 | HOMER Cy<br>Igs) | ycle Charging    | Capacity<br>Scaled A | y Shortage<br>Average (3 | e (0.00 %)<br>.00 m/s) | Total NPC:<br>Levelized COE:<br>Operating Cost | \$589,i<br>:: \$22,0  | 785.80<br>\$3.57<br>068.10 |
| missions                                                                                                            |                                                                                                                                                                                                                                           |                  |                  |                      |                          |                        |                                                |                       |                            |
| Cost Summary Cash Flo                                                                                               | w Compare Economics Elec                                                                                                                                                                                                                  | trical Fuel Su   | mmary Diesel I   | Renewable Pen        | etration                 | Generic 1kW            | h Li-Ion PV (                                  | Generic 3kW Converter |                            |
| <ul> <li>Net Present</li> <li>Annualized</li> <li>Categorize</li> <li>By Component</li> <li>By Cost Type</li> </ul> | \$300,000 -<br>\$200,000 -<br>\$100,000 -<br>\$0 -<br>\$100,000 -<br>\$0 -<br>\$100,000 -<br>\$0 -<br>\$0 -<br>\$100,000 -<br>\$0 -<br>\$100,000 -<br>\$0 -<br>\$100,000 -<br>\$0 -<br>\$0 -<br>\$0 -<br>\$0 -<br>\$0 -<br>\$0 -<br>\$0 - | ital             | Operating        |                      | Replaceme                | ent                    | Salvage                                        | Fuel                  |                            |
|                                                                                                                     | Cap                                                                                                                                                                                                                                       |                  |                  |                      |                          |                        |                                                |                       |                            |
|                                                                                                                     | Component                                                                                                                                                                                                                                 | Capital (\$)     | Replacement (\$) | 0&M (\$)             | Fuel (\$)                | Salvage (\$)           | Total (\$)                                     |                       |                            |



# Summary

## **Risk Mitigation**

- Mini-grids and Distributed Energy Systems are needed to fill unmet electrical needs in Africa
- In order for a project to be bankable from a technical perspective great care should be taken in the following phases :
  - Project Design needs of the user and funders must be fulfilled
  - Equipment Selection especially hybrid design with energy storage devices
  - Risk Identification and Mitigation demonstrate managed risks

**Presented by Joseph Padbury** Business Development Manager Sub-Saharan Africa, UL Renewables





## Need help with your project?

### **Software Solutions**

### **Advisory Services**

#### HOMER Pro Modeling Software



Free 21-Day Trial or Trial Renewal HOMERenergy.com/TryPro

#### Training & Premium Support





#### Get the most from your HOMER software

You invested in HOMER—now you need to make the most of your investment through training and support. We offer the only certified training on how to use HOMER for analysis of distributed generation and microgrids. We have either online or live options for individuals and organizations—at your facility or ours.

| For Individuals                                                                                                                                                                            | For Organizations                                                                                                                                                                                                      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Get the HOMER skills and approaches you<br>need.<br>Join us live in our online classrooms where<br>our instructors walk you through every<br>aspect of HOMER and answer your<br>questions. | Your team works together to deliver<br>solutions, now equip them with the HOMER<br>skills and approaches needed to achieve<br>your goals. In-person or online instructor-let<br>training covers every aspect of HOMER. |  |  |  |
| Learn More                                                                                                                                                                                 | Learn More                                                                                                                                                                                                             |  |  |  |

Support@HOMERenergy.com

#### Project Consulting Services



Joseph Padbury Joseph.Padbury@ul.com



## Questions & Answers

Moderated by Marilyn Walker

Founder, HOMER Energy by UL

### UL advisory services, contact

Joseph Padbury Joseph.Padbury@ul.com T: +27.10.822.3950; M: +27.76.297.0138

### HOMER software, contact

sales@HOMERenergy.com



Free Trial of HOMER software: HOMERenergy.com Learn more about UL Renewables: UL.com/renewables





## 8<sup>th</sup> ANNUAL **H** MER International **MICROGRID** Conference 100% Virtual & Free — October 12-16, 2020

#### REGISTER NOW SEE SPONSORSHIP PACKAGES

https://microgridconference.com/





## Thank you!



8<sup>th</sup> ANNUAL **MER** International **MICROGRID** Conference 100% Virtual & Free — October 12-16, 2020

REGISTER NOW SEE SPONSORSHIP PACKAGES https://microgridconference.com/



