MAXIMISING RETURNS OF LARGE-SCALE SOLAR INSTALLATIONS

October 15, 2020

SUNPOWER

FROM MAXEON SOLAR TECHNOLOGIES

AGENDA

- Introduction: Maxeon Solar Technologies
- Impacts of reliability and quality
- Impacts of larger, more powerful solar panels
- Let's crunch the numbers
- Conclusion

SUNPOWER

FROM MAXEON

SOLAR TECHNOLOGIES

Sevi Gultes Application Engineer - Maxeon Solar Technologies

MAXEON SOLAR TECHNOLOGIES

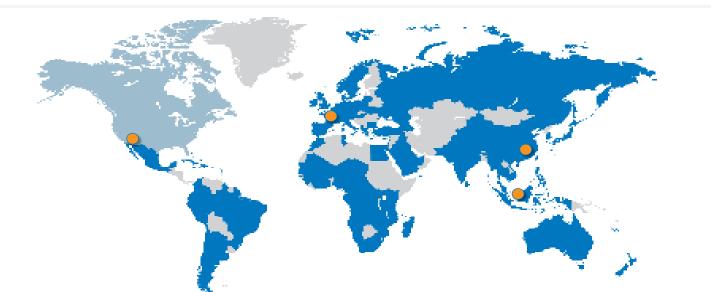
FROM MAXEON SOLAR TECHNOLOGIES

COMPANY OVERVIEW

HQ in Singapore NASDAQ (MAXN)

\$1.2 Billion Net Revenue (2019)

SunPower brand Outside of the USA



5,000 Employees In 14 Countries

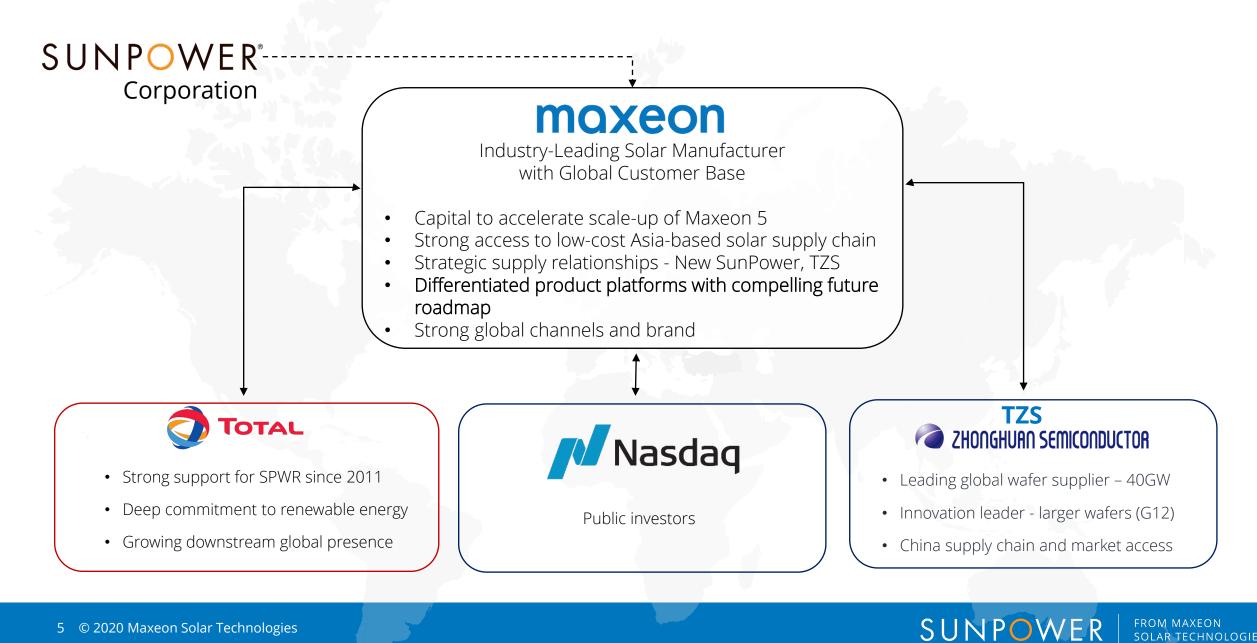
2.75 GW Manuf. Capacity France, Mexico, China, Malaysia, Philippines

#1 Shareholder is Total S.A., a \$150 Billion energy company.¹

1 Source: Forbes, The World's Largest Oil & Gas Companies 2020. Forbes Global 2000. 2 Based on datasheet review of websites of top 20 manufacturers per IHS, as of Jan, 2020.

Residential Solar

Commercial Solar

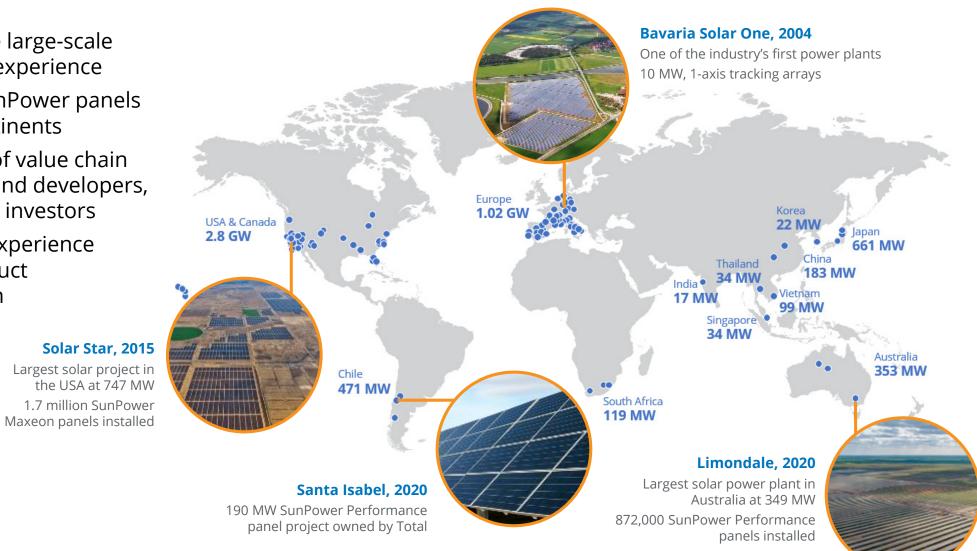


FROM MAXEON

SOLAR TECHNOLOGIES

SUNPOWER

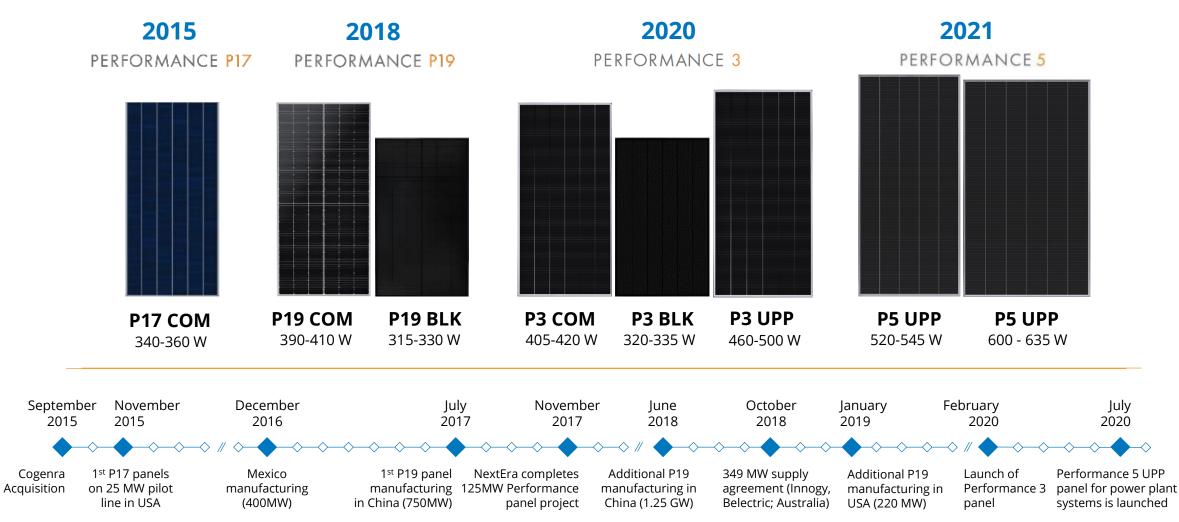
MAXEON BENEFITS FROM STRONG STRATEGIC PARTNERSHIPS



5 © 2020 Maxeon Solar Technologies

FROM MAXEON SOLAR TECHNOLOGIES

MAXEON HAS A DEEP GLOBAL POWER PLANT LEGACY


- Maxeon has extensive large-scale solar system domain experience
- More than 5GW of SunPower panels installed across 6 continents
- Deep understanding of value chain drivers — from EPCs and developers, to financiers, IPPs and investors
- Legacy downstream experience informs Maxeon product development & design

Note: Not an exhaustive illustration of SunPower PP projects

SUNPOWER PERFORMANCE PANELS

Proven in the field

SUNPOWER

FROM MAXEON

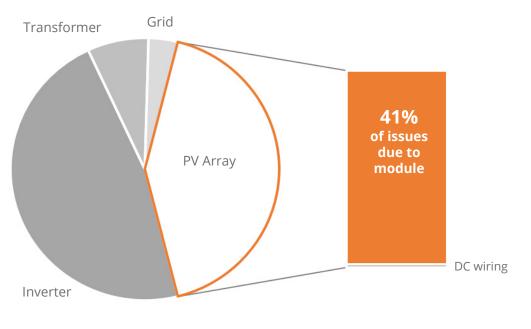
SOLAR TECHNOLOGIES

7 © 2020 Maxeon Solar Technologies

SUNPOWER | performance

PANEL RELIABILITY IMPORTANCE IN LARGE SCALE SOLAR

8 © 2020 Maxeon Solar Technologies

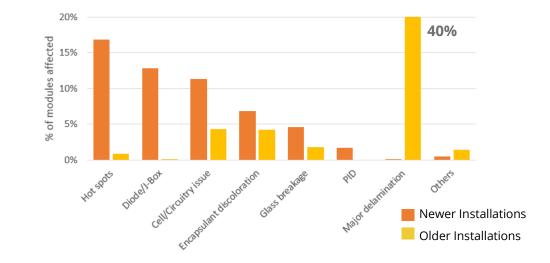


FROM MAXEON SOLAR TECHNOLOGIES

RELIABILITY OF SOLAR POWER PLANTS

Panel reliability is an ongoing issue in the field

A recent study of EU powerplants found **41% of issues were caused by panels.**¹


Power Plant Failures that Affect Production¹

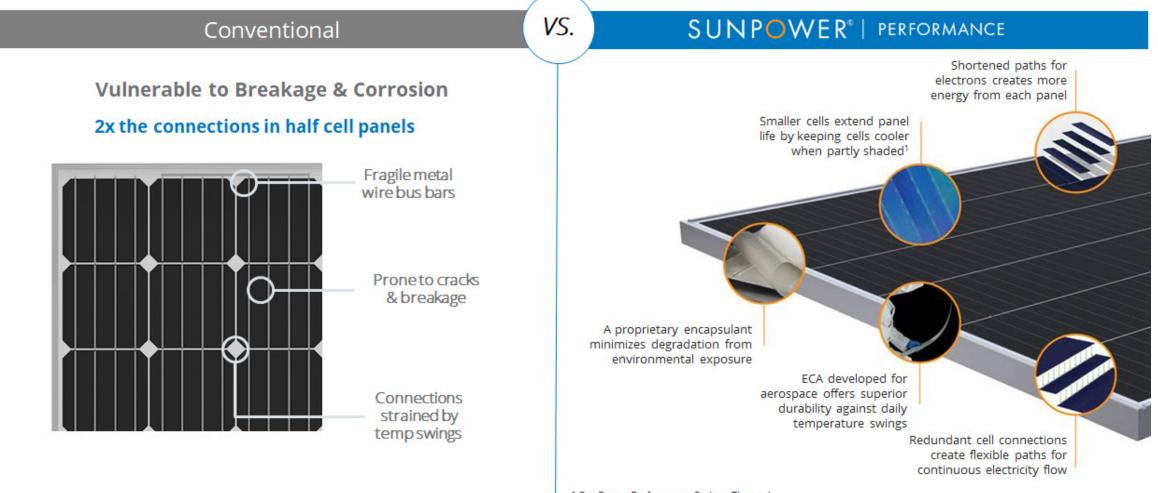
Newer panels show a higher occurrence of

major panel issues like hotspots and diode failure.

The youngest group of panels, built during a period of intense cost pressure, shows:

- Increased hotspots
- Increased diode and J-box issues
- Increased cell circuitry issues
- Increased encapsulant issues
- es Increased PID

Change in Degradation Mode by Module Age¹

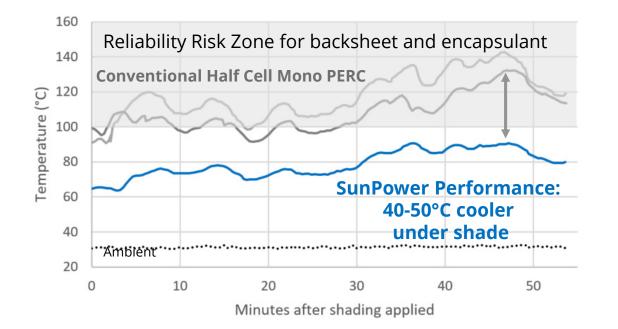

¹ Lillo-Bravo, et. al. "Impact of Energy Losses Due to Failures on Photovoltaic Plant Energy Balance." *Energies*. 2018.

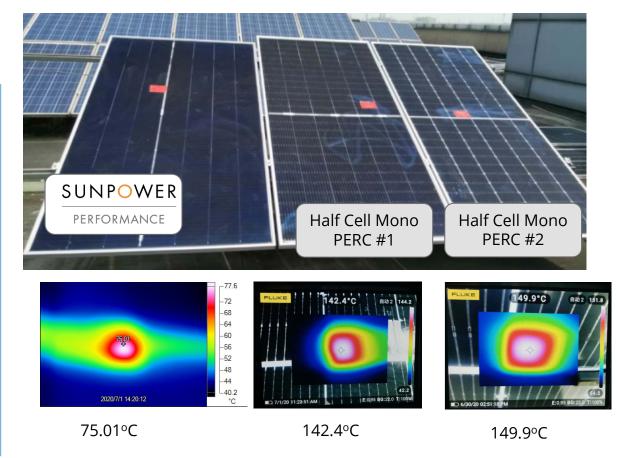
¹ Jordan, et. al. "Photovoltaic Failure and Degradation Modes." PiP, 2017.

MAKING THE CONVENTIONAL, EXCEPTIONAL

Innovative shingled cell design uniquely engineered for the reliability and durability needs of power plant installations

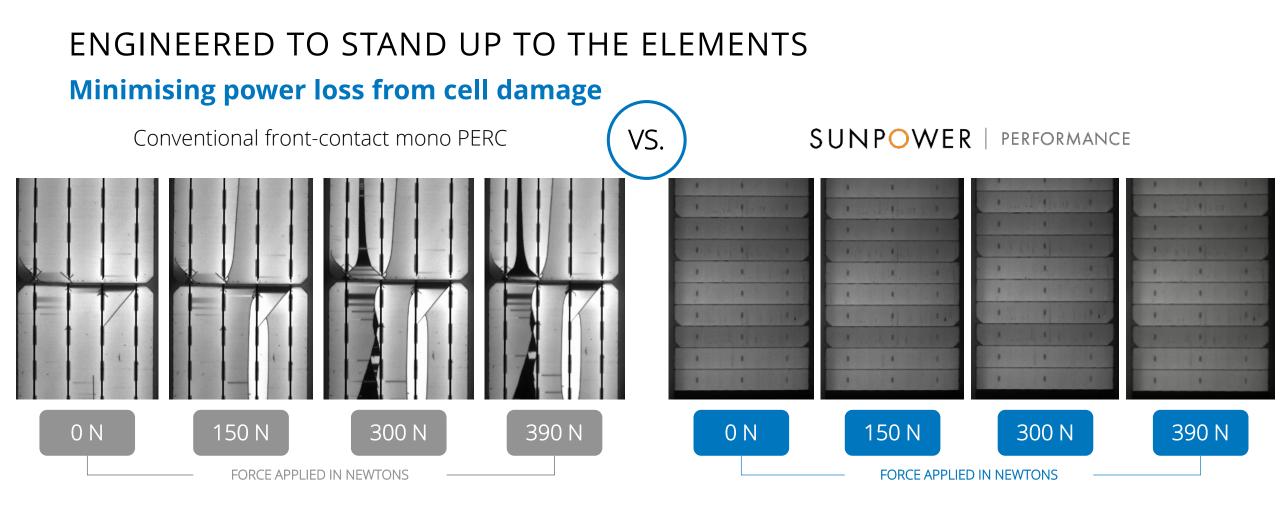
1 SunPower Performance Series – Thermal Performance, Z.Campeau 2016.


SUNPOWER FROM MAXEON SOLAR TECHNOLOGIES


HOTSPOT PROTECTION THROUGH BETTER DESIGN

Performance panels reduce the risk of temperature-related failures through crack mitigation and unique circuitry

Under severe cell cracking or worst-case shading conditions, Performance panels operate at **40-50°C lower temperature.**¹


SUNPOWER

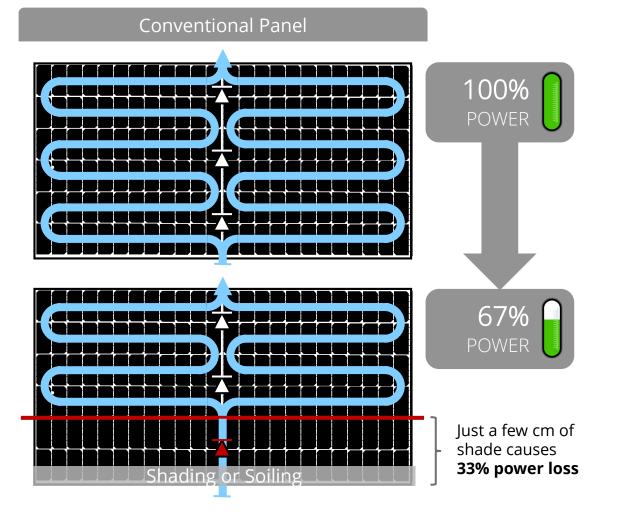
FROM MAXEON

SOLAR TECHNOLOGIES

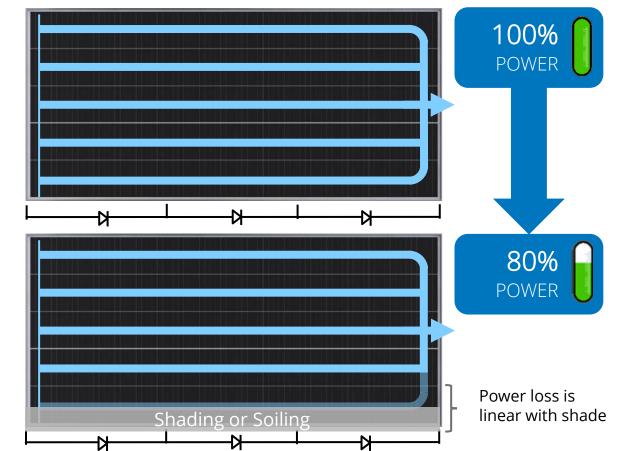
¹ SunPower internal study, 2020.

11 © 2020 Maxeon Solar Technologies

Demonstration shows brittleness of typical conventional cells


Smaller cells are less susceptible to breakage Confines cracks to a smaller portion of the panel

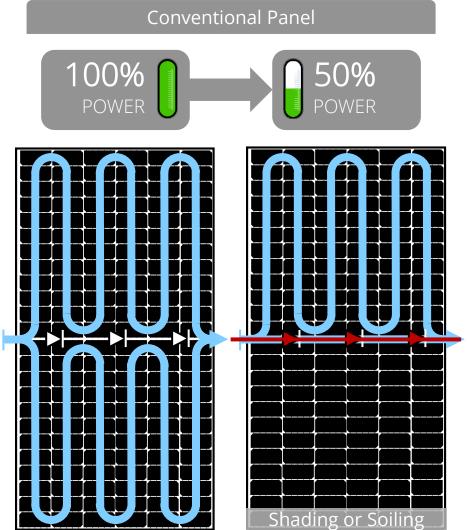
SUNPOWER


FROM MAXEON

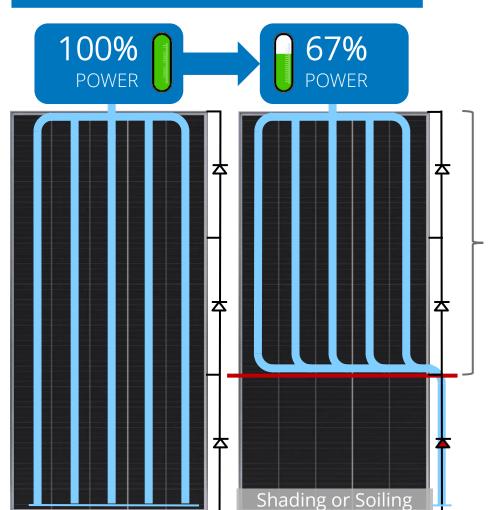
SOLAR TECHNOLOGIES

UNIQUE DESIGN MITIGATES INTER-ROW SHADING (LANDSCAPE)

SUNPOWER | performance

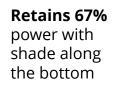


SUNPOWER


FROM MAXEON

SOLAR TECHNOLOGIES

UNIQUE DESIGN MINIMISES SHADING LOSS (PORTRAIT)



50% power due to shade along the bottom

SUNPOWER

SUNPOWER | performance

FROM MAXEON

SOLAR TECHNOLOGIES

14 © 2020 Maxeon Solar Technologies

SUNPOWER PERFORMANCE PANEL LINE FEATURES

Performance 5 UPP (Utility and Power Plant)

2362 mm

SUNPOWER | PERFORMANCE 5

NEW Larger, full square G12 cells NEW Bifacial power generation NEW Framed glass/glass construction 3 Junction boxes, 3 Diodes (1 each)

	Warranty	P5 UPP	
	Power (years)	30	
5	Start	98.0%	
0	Deg rate	0.45%	

Power Up to 545 W

Efficiency Up to 21.1%

SUNPOWER

15 © 2020 Maxeon Solar Technologies

A terabase

Pierre Gousseland

Co-Founder and VP for Business Development & Partnerships Terabase Energy

Impacts of larger, more powerful solar panels

Terabase Energy

Terabase Energy is developing the digital & automated development and installation platform to achieve \$0.01/kWh solar power by 2025

Significant momentum & milestones since launch early 2019:

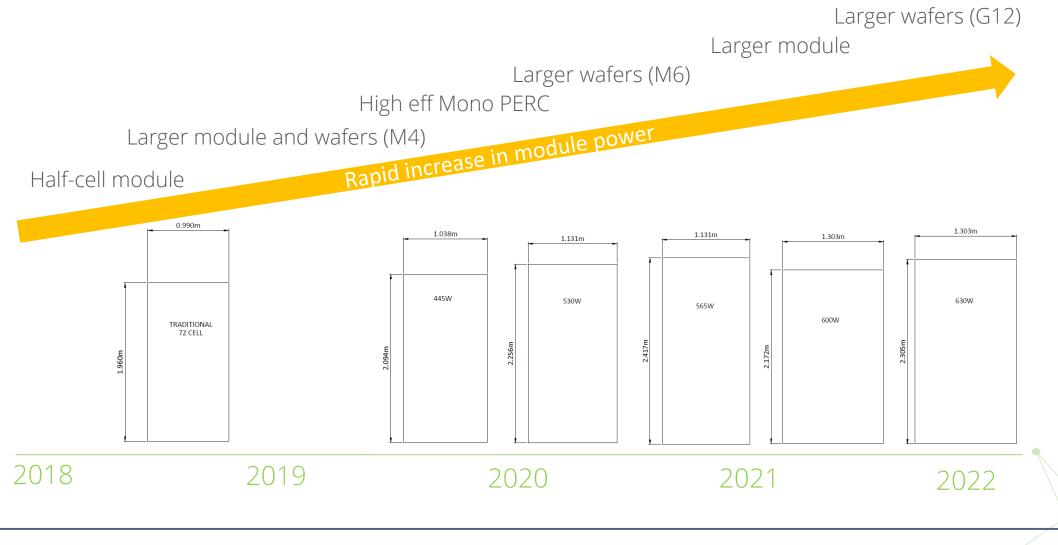
- 1. IP and team spin-out of a major public solar company
- 2. Seasoned team with deep solar industry experience
- 3. \$8M raised from leading cleantech investors
- 4. Platform Phase 1 released; 200+ companies registered in 25 countries
- 5. US DOE R&D grant awarded for construction automation
- 6. Headquartered in California with teams in EMEA and APAC

What we do:

- 1. Development platform GIS & AI based design platform to assess technology/project fit and optimize projects
- 2. Development phase services evaluation of complex engineering, technology, and financial parameters with the full project lifecycle in mind
- 3. Engineering Services from conceptual to IFC drawings
- 4. Procurement Services from supplier qualification to EPC tenders
- 5. Deployment platform Logistics, fulfillment, QC & automated installation

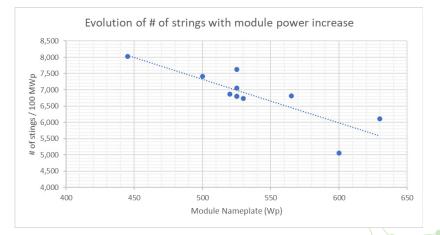
Contact Info: Pierre Gousseland VP, Business Development & Partnerships, Co-Founder pgousseland@terabase.energy

k terabase


The 72-cell form factor

- Utility solar dominated by the 72-cell form factor for ~10 years
- Mounting and electrical systems optimized around this form factor
- Commoditization of utility solar panels facilitated by standard 72cell design since:
 - Entire ecosystem from development to BOS to construction has been designed around it
 - Modules have been largely plug-compatible
- 72-cell module very rapidly becoming obsolete being replaced by half-cell or shingled bifacial panels in different form factors and increasing in size

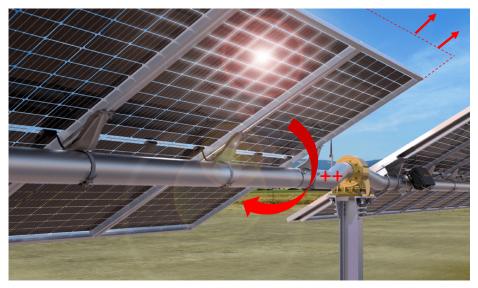
Utility Module Competitive Trends

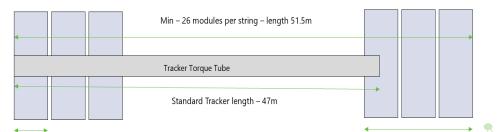

System Levels Benefits and Trade-Offs

- Module Installation
 - Installation unit cost increased (by 0% to 20% depending on size, weight and installer) due to productivity loss from bigger/heavier modules; BUT
 - Overall net positive due to lower module count
- Electrical BOS Impacts
 - Cost of DC hardware is subject to the length (m) of the string; BUT
 - Higher string power resulting in **savings due to lower string count**
 - Potentially some hardware optimization required by string inverter manufacturers for higher current
- Shipping Benefits

terabase

• Higher shipping density in most cases but might vary based on form factor





Note: String lengths calculated based on a Min Site Temp of -20C

Mechanical Impacts to be Considered

- Increased wind loads on racking due to bigger "sail area" and heavier modules:
 - May require more steel, increasing racking costs
 - May need to shorten tracker or reduce number of rows, decreasing total tracker power
 - For most trackers, increasing module width preferable as opposed to module length to reduce force on torque tube components
- Increased pile loading -> increase in pile length -> increase in material and potentially installation costs
- Published max tracker wind speed on datasheets based on traditional 72-cell modules. May be inadequate for larger form factors
- Optimal string length for wider modules may not exceed max allowable tracker length
- Strong coordination with racking vendors is needed and will address most of the above challenges

Confidential © Terabase Energy

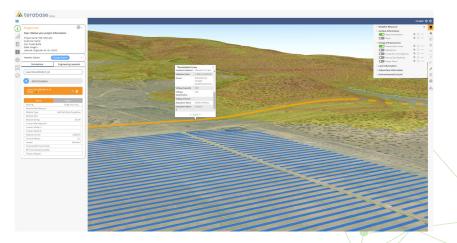
🛦 terabase

Impacts Summary

- Overall a net positive impact on project LCOE
- Benefit varying project by project. Need to carefully assess the impact on mechanical/electrical BOS and installation on a project specific basis
- Impacts to be further assessed and mitigated with racking suppliers and installers
- Some impacts to be further studied:

terabase

- Do larger modules endure more stress during shipping, installation, operation causing PV modules reliability concerns? (e.g. microcracks)
- Tracker wind tunnel test carried out with traditional 72-cell modules. Using larger form factor modules might lead to change in tracker natural frequency
- As the industry moves towards larger form factor modules, the careful qualification and selection of **compatible, high performance, high reliability PV modules** become **more critical than ever**.



 410 Wp / 72 cell
 Tracker
 DC materials
 Module
 Lower module
 Heavier and
 500 Wp module

 module
 materials and and installation
 Shipping
 count
 larger module
 installation and

 installation and
 installation
 BOS - total cost
 BOS - total cost
 BOS - total cost

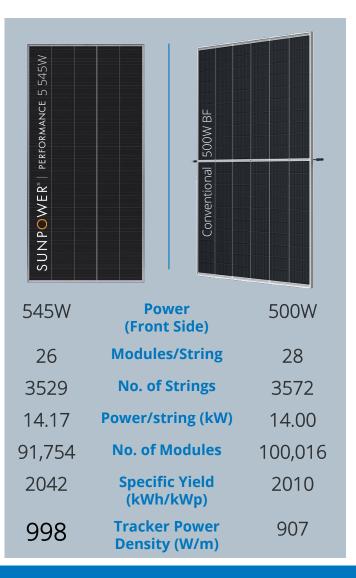
Note: same efficiency for 410 and 500 Wp modules, based on project in Spain, based on 1P unganged tracker

Robert Chew Application Engineer - Maxeon Solar Technologies

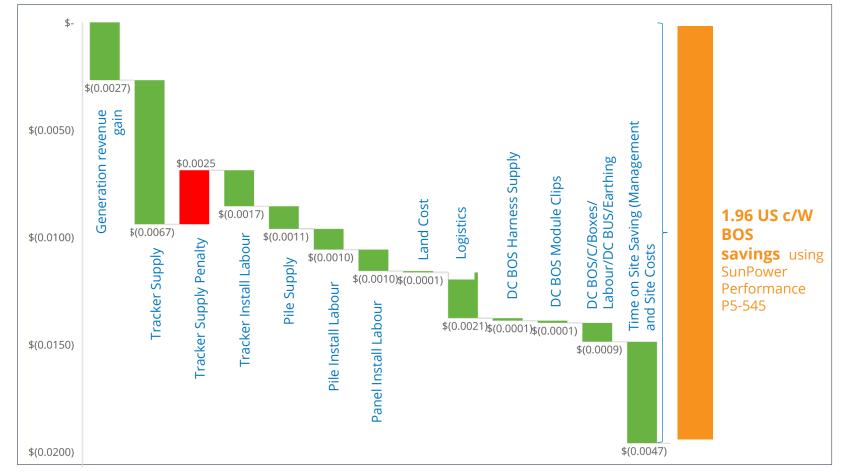
IS BIGGER ALWAYS BETTER? LET'S CRUNCH THE NUMBERS

EXAMPLE CASE STUDIES

Project: 50MWp 1P & 2P Tracker


Site Albedo: 0.2 avg GCR: 0.4

Inverter: SMA SC 4600 UP PPA: Country Dependent Discount Rate: Region Dependent O & M Cost: \$2.4-8k/MWp/Yr


and the second

Yield Simulation: PVSyst Ver7.XX Inflation: Region Dependent

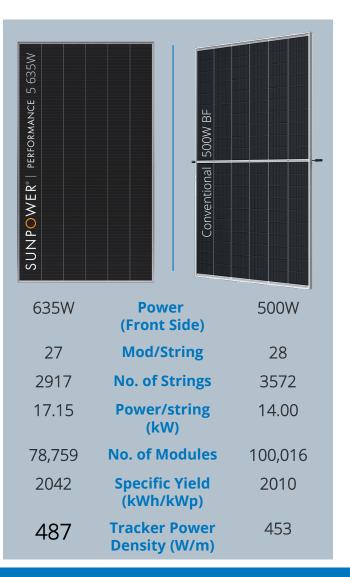
CASE STUDY 1: 50MW 2P TRACKER | VIETNAM

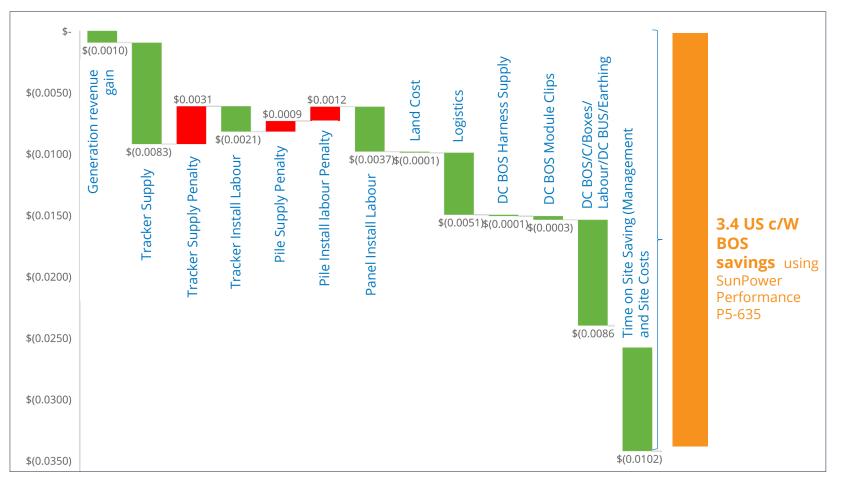
Understanding the balance of system reductions

FROM MAXEON

SOLAR TECHNOLOGIES

SUNPOWER


CASE STUDY 2: 50MW 1P TRACKER | AUSTRALIA


FROM MAXEON

SOLAR TECHNOLOGIES

SUNPOWER

Understanding the balance of system reductions

S	Spain 2P Tracker				
~		Conv 500W Bifacial	SPR-P5-545	SPR-P5-635	
	Yield kWh/kWp	2234	2256	2256	
	BOS Savings (€c/Wp)		1.56	2.46	
Ĵ	BOS Savings (%)		3.1%	4.9%	
	LCOE		-3.7%	-5.3%	
	ROI	14.62%	15.24%	15.53%	
	IRR	13.52%	14.20%	14.51%	
	Assumption Metric		Value €0.50/W		
	Estimated EPC Cost				
	Discount Rate Inflation Rate PPA Rate €/MWh Spot Market Rate €/MWh		6%		
ľ			1%		
Ì			35.07		
Ī			35.07		
	PPA Term		12 Yrs		
	Estimated Opex Cost		€4,250/MWp/Yr		
	Opex Annual Escalation		1%		

SUNPOWER

FROM MAXEON SOLAR TECHNOLOGIES

* 1 EUR = 0.85 USD

Vietnam 2P Tracker			
	Conv 500W Bifacial	SPR-P5-545	SPR-P5-635
Yield kWh/kWp	2010	2048	2048
BOS Savings (\$USc/Wp)	-	1.96	2.98
BOS Savings (%)		3.4%	5.2%
LCOE		-4.8%	-6.4%
ROI	23.64%	24.97%	25.44%
IRR	22.81%	24.19%	24.68%
Assumption Metric		Value	
Estimated EPC Cost		\$0.57/W	
Discount Rate	Discount Rate		
Inflation Rate		1.5%	
PPA Rate \$/MWh		70.90	
Spot Market Rate \$/MWh		25.00	
PPA Term		20 Yrs	
Estimated Opex Cost		\$7,000/MWp/Yr	
Opex Annual Escalation		1%	

SUNPOWER

FROM MAXEON SOLAR TECHNOLOGIES

-10.35

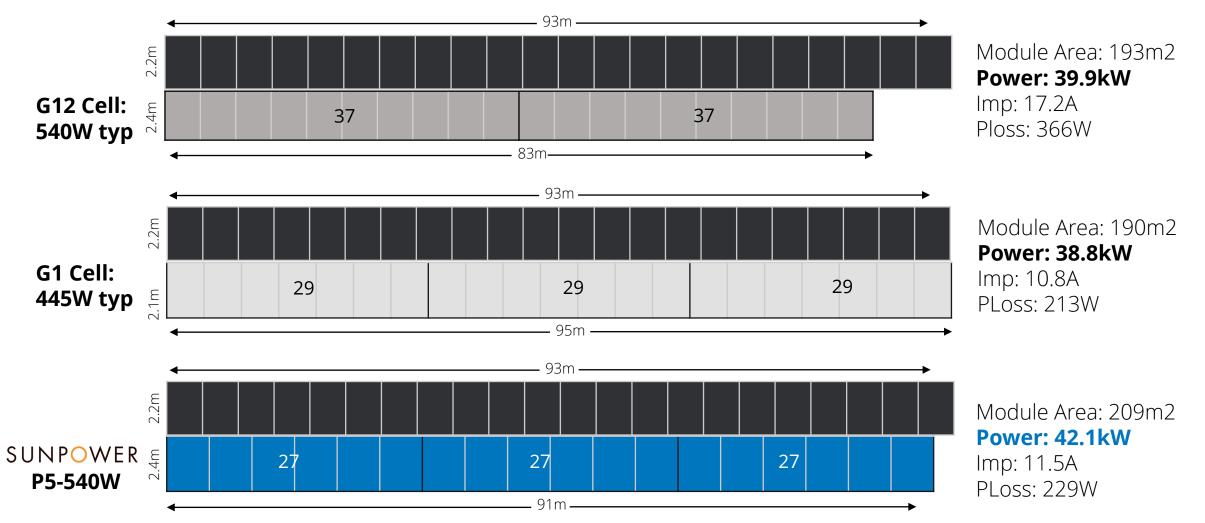
	100 C			
Malaysia 2P Fixed Tilt				
	Conv 500W Bifacial	SPR-P5-545	SPR-P5-635	
Yield kWh/kWp	1537	1559	1559	
BOS Savings (\$USc/Wp)		1.71	2.70	
BOS Savings (%)		3.1%	4.9%	
LCOE		-4.3%	-6.0%	
ROI	9.76%	10.22%	10.41%	
IRR	7.96%	8.52%	8.76%	
Assumption Metric		Value		
Estimated EPC Cost		\$0.55/W		
Discount Rate		7%	1. A.	
Inflation Rate		3.0%		
PPA Rate \$/MWh		36.14		
Spot Market Rate \$/MWh		36.14		
PPA Term		21 Yrs		
Estimated Opex Cost		\$2,400/MWp/Yr		
Opex Annual Escalation		1%		

no Ear

FROM MAXEON SOLAR TECHNOLOGIES

SUNPOWER

Australia 1P Tracker				
	Conv 500W Bifacial	SPR-P5-545	SPR-P5-635	
Yield kWh/kWp	2065	2089	2089	
BOS Savings (\$USc/Wp)		2.17	3.42	
BOS Savings (%)		3.1%	4.9%	
LCOE		-3.8%	-5.4%	
ROI	10.72%	11.21%	11.42%	
IRR	9.03%	9.60%	9.85%	
Assumption Metric		Value	Value	
Estimated EPC Cost		\$0.70/W		
Discount Rate		8%		
Inflation Rate		3.0%		
PPA Rate \$/MWh		39.85		
Spot Market Rate \$/MWh		39.85		
PPA Term		12 Yrs		
Estimated Opex Cost		\$8,000/MWp/Yr		
Opex Annual Escalation		1%		


FROM MAXEON SOLAR TECHNOLOGIES

SUNPOWER

30 © 2020 Maxeon Solar Technologies

TRACKER COMPATIBILITY

The keys to ensuring a high installed capacity per tracker

Optimal 1P Module Area: 215-220m2

31 © 2020 Maxeon Solar Technologies

SUNPOWER FROM MAXEON SOLAR TECHNOLOGIES

SUNPOWER | PERFORMANCE

FROM MAXEON SOLAR TECHNOLOGIES

THE BIGGER THE BETTER, DEPENDS ON DETAILED ASSESSMENT Conclusion

Large form factor modules drive the balance of system costs down by:

- More power per module (We physically install modules not watts) Less overall DC Strings.
- Reduced Tracker quantities and piles in most cases
- Reduced Logistical movements
- Reduced time on site (Less modules & trackers to install)

However, the level of BOS savings depends on:

- Individual assessment of each project site
- Tracker, BOS & Inverter full compatibility check
- Assessment of electrical losses
- OH&S

Reliability & Durability is Key:

 Large modules mean more force and movement. <u>Maxeon Solar Technologies has engineered</u> <u>durability and reliability into their modules designs.</u>

SUNPOWER

FROM MAXEON SOLAR TECHNOLOGIES

Thank You

34 © 2020 Maxeon Solar Technologies