

Danskammer Power to Gas Vision

May 2021

Existing Facility Overview

- 505 megawatt ("MW") facility built in 1952.
- Previously operated as a coal plant but was converted to gas in the last decade.
- Serves as a NYISO reliability and capacity resource

DANSKAMMER

Operational Overview	
Nameplate Capacity:	~505 MW Unit 1: 69MW; Unit 2: 67MW; Unit 3: 140MW; Unit 4: 229MW
Primary / Secondary Fuel:	Natural Gas – All Units / No.6 Fuel Oil – Units 1 and 2
Net Plant Heat Rate Range:	9,900 to 11,600 Btu / kWh
Turbine Manufacturer:	General Electric
Turbine Technology:	Steam
Plant Configuration:	4 x 4 Boilers on Steam Turbines

Redevelopment Project

- Building a new 600 MW state of the art combined cycle generation facility.
- Repurposing the existing site and infrastructure – reducing time, cost and environmental footprint
- Will support New York's renewable goals and power more than 500,000 homes and businesses

DANSKA²MMER

New Facility Characteristics	
Name Plate Capacity:	600 MW
Turbine:	Mitsubishi 501JAC
Heat Rate:	~6,303 to 6,754 Btu / kWh
Gas Interconnection:	Central Hudson Local Distribution System
Electrical Interconnection	115kV Central Hudson Transmission System
Configuration	1-on-1 Combined Cycle

Site Rendering

DANSKAMMER

 Mitsubishi JAC Technology capable of running on 30% hydrogen as installed

Minimal retrofits needed to convert to 100% hydrogen

Helping NY Meet Its Energy Targets

*years are approximations

DANSKAMMER

Hydrogen Production & Storage

Goals: To store and distribute hydrogen to users and feed turbines for power generation

Hydrogen Vision

DANSKAMMER

Danskammer's Commitment to Hydrogen:

- Joined the Advisory Board for the Institute of Gas, Innovation and Technology at SUNY Stonybrook
- Create the Danskammer Hydrogen Innovation Center pilot project involving 11-22 MW of hydrogen electrolyzers
- Formed the Green Hydrogen Alliance with industry partners to promote hydrogen development: www.greenhydrogenNY.com

Danskammer is working to:

- Secure low-cost renewable contracts
- 4 Find optimal locations for electrolyzer siting
- Establish relationships with pipeline companies in an effort to involve them in R&D efforts on transportation of hydrogen
- Advocate for policies to accelerate use of green hydrogen at state and federal level

Danskammer's Industry Challenges

Establishing green hydrogen as a zero-carbon fuel source requires examination of the following:

- Sourcing renewable electricity
- Curtailment and resulting economic challenges of transmission congestion
- Transporting green hydrogen through the existing natural gas pipeline system
- Solving local green hydrogen storage challenges
- Stimulating market development though identifying suitable purchasers
 - o Industrial
 - Transportation
- The effect of hydrogen on end-users, especially residential customers

DANSKAMMER

Hydrogen Policy Challenges

- Qualification of green hydrogen as a fuelalternative and zero-carbon fuel
- Mandating a green hydrogen incentive and financing program through RECs, project capital support, or a carbon tax
- Expediting regulatory approval for use of green hydrogen in existing pipeline infrastructure
- Accelerating the transition to zeroemission trucks and buses through emission standards
- Mandating gas utilities to blend a minimum and safe level of green hydrogen

QUESTIONS?

